Facies recognition using wavelet based fractal analysis and waveform classifier at the Oritupano-A Field, Venezuela
نویسنده
چکیده
We have used a Wavelet Based Fractal Analysis (WBFA) and a Waveform Classifier (WC) to recognize lithofacies at the Oritupano A field (Oritupano-Leona Block, Venezuela). The WBFA was applied first to Sonic, Density, Gamma Ray and Porosity well logs in the area. The logs that give the best response to the WBFA are the Gamma Ray and NPHI (porosity) logs. In the case of the logs, the lithological content could be associated to the fractal parameters: slope, intercept and fractal dimension. The map obtained using the fractal dimension shows tendencies that generally agree with the depositional patterns previously observed in conventional geological maps. According to the results obtained in this study, zones with fractal dimension values lower than 0.9 correspond to sandstone channels. Values between 0.9 and 1.2 coincide with the interdistributary deltaic shelf and values greater than 1.2 might be associated with zones of greater shale content. The WBFA and WC results obtained for the seismic data show no relation with the lithofacies. The lost of low and high frequencies in these seismic data, as well as phase problems, could be the reasons for this behavior.
منابع مشابه
Support Vector Machine Based Facies Classification Using Seismic Attributes in an Oil Field of Iran
Seismic facies analysis (SFA) aims to classify similar seismic traces based on amplitude, phase, frequency, and other seismic attributes. SFA has proven useful in interpreting seismic data, allowing significant information on subsurface geological structures to be extracted. While facies analysis has been widely investigated through unsupervised-classification-based studies, there are few cases...
متن کاملReservoir Rock Characterization Using Wavelet Transform and Fractal Dimension
The aim of this study is to characterize and find the location of geological boundaries in different wells across a reservoir. Automatic detection of the geological boundaries can facilitate the matching of the stratigraphic layers in a reservoir and finally can lead to a correct reservoir rock characterization. Nowadays, the well-to-well correlation with the aim of finding the geological l...
متن کاملA COMPARATIVE ANALYSIS OF WAVELET-BASED FEMG SIGNAL DENOISING WITH THRESHOLD FUNCTIONS AND FACIAL EXPRESSION CLASSIFICATION USING SVM AND LSSVM
This work presents a technique for the analysis of Facial Electromyogram signal activities to classify five different facial expressions for Computer-Muscle Interfacing applications. Facial Electromyogram (FEMG) is a technique for recording the asynchronous activation of neuronal inside the face muscles with non-invasive electrodes. FEMG pattern recognition is a difficult task for the researche...
متن کاملAutomated Tumor Segmentation Based on Hidden Markov Classifier using Singular Value Decomposition Feature Extraction in Brain MR images
ntroduction: Diagnosing brain tumor is not always easy for doctors, and existence of an assistant that facilitates the interpretation process is an asset in the clinic. Computer vision techniques are devised to aid the clinic in detecting tumors based on a database of tumor c...
متن کاملAnalysis of motor fan radiated sound and vibration waveform by automatic pattern recognition technique using “Mahalanobis distance”
In recent years, as the weight of IT equipment has been reduced, the demand for motor fans for cooling the interior of electronic equipment is on the rise. Sensory test technique by inspectors is the mainstream for quality inspection of motor fans in the field. This sensory test requires a lot of experience to accurately diagnose differences in subtle sounds (sound pressures) of the fans, and t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007